A locking-free discontinuous Galerkin method for linear elasticity in locally nearly incompressible heterogeneous media
نویسندگان
چکیده
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. A locking-free discontinuous Galerkin method for linear elasticity in locally nearly incompressible heterogeneous media Daniele Antonio Di Pietro, Serge Nicaise
منابع مشابه
Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems
An adaptive discontinuous Galerkin finite element method for linear elasticity problems is presented. We develop an a posteriori error estimate and prove its robustness with respect to nearly incompressible materials (absence of volume locking). Furthermore, we present some numerical experiments which illustrate the performance of the scheme on adaptively refined meshes.
متن کاملA locking-free and optimally convergent discontinuous-Galerkin-based extended finite element method for cracked nearly incompressible solids
For nearly incompressible elasticity, volumetric locking is a well-known phenomenon with low-order (cubic or lower) fi nite element method methods, of which continuous extended fi nite element methods (XFEMs) are no exception. We will present an XFEM that is simultaneously lock-free and optimally convergent. Based on our earlier work of an optimally convergent discontinuous-Galerkin-based XFEM,...
متن کاملDiscontinuous Galerkin and the Crouzeix–raviart Element: Application to Elasticity
We propose a discontinuous Galerkin method for linear elasticity, based on discontinuous piecewise linear approximation of the displacements. We show optimal order a priori error estimates, uniform in the incompressible limit, and thus locking is avoided. The discontinuous Galerkin method is closely related to the non-conforming Crouzeix–Raviart (CR) element, which in fact is obtained when one ...
متن کاملNumerical simulation of two-phase immiscible incompressible flows in heterogeneous porous media with capillary barriers
We present a new version of the sequential discontinuous Galerkin method introduced in [25] for two-phase immiscible incompressible flows in heterogeneous porous media with a discontinuous capillary field. Here, a new implementation of the extended interface condition, that does not use the threshold saturation value at the interface and permits treatment of different residual saturations in di...
متن کاملA hybridizable discontinuous Galerkin method for two-phase flow in heterogeneous porous media
We present a new method for simulating incompressible immiscible two-phase flow in porous media. The semi-implicit method decouples the wetting phase pressure and saturation equations. The equations are discretized using a hybridizable discontinuous Galerkin (HDG) method. The proposed method is of high order, conserves global/local mass balance, and the number of globally coupled degrees of fre...
متن کامل